
 RESEARCH ARTICLE

Inventi Impact: Cloud Computing Vol. 2012, Issue 1

[E- ISSN 2230-813X, P- ISSN 2249-1309]

2012ecc022, CCC: $10 © Inventi Journals (P) Ltd
Published on Web 15/02/2012, www.inventi.in

INTRODUCTION
T-way testing has been actively investigated
for both software and hardware testing due
to its ability to efficiently minimize the test
size systematically. However, one challenge
in this area is dealing with the combinatorial
explosion problem, which typically requires
a very expensive computational process to
find a good test set that covers all the
combinations for a given interaction strength
(t).

As an illustration of combinatorial
explosion problem, consider the option
dialog Microsoft Internet Explorer software
(see Fig. 1). Even if only “Advanced” tab
option is considered, there are already 54
possible configurations to be tested. With the
exception of searching and under line links
which take 4 and 3 possible values
respectively, each configuration can take
two values (i.e. checked or unchecked). Here,
there are 254x4x3 combinations of test cases
to evaluate. Assuming that it takes only one
second for one test case, then it would
require nearly 68x107 years for a complete
test of the “Advanced” tab option.

Similar situation can be observed when
testing a typical hardware product. As a
simple example, consider a hardware
product with 30 on/off switches. To test all
possible combination would require 230 test
cases. If the time required for one test case is
one second, then it would take nearly 34
years for a complete test. Furthermore, in
hardware testing it is required to test each
instance of hardware unit independently. For
instance, suppose a hardware production
line requires testing one million switches. It
is clear that testing every possible
combination is impossible due to resources
as well as time to market constraints. Thus,
there is a need of a sampling strategy for
software and hardware testing.

The simplest approach tests all values at
least once. The most thorough approach

1Department of Computer Engineering, College
of Engineering, University of Baghdad, Baghdad,
Iraq.
E-mail: younismi@gmail.com
*Corresponding author

2School of Electrical and Electronics
Engineering, Universiti Sains Malaysia, Penang,
Malaysia.

exhaustively tests all parameter-value
combinations. While testing only individual
values may not be enough, exhaustive testing
of all possible combinations is not always
feasible. t-way strategies (i.e. as sampling
strategies) are a reasonable alternative that
falls in between these two extremes [1].
Here, the t-way strategy (also termed
Combinatorial Interaction Testing) can
systematically reduce the number of test
data by selecting a subset from exhaustive
testing combination based on the strength of
interaction coverage (t) such that each t-wise
combination of variables is covered at least
once.

Consider a cross platform testing to be
performed for an RFID-based attendance
system. The system has four configuration
parameters of interest as shown in Table 1.
There are three CPU types; three types of OS;
three types of browsers; and three Internet
connectivity options. To exhaustively test all
combinations of the four configuration
parameters that have 3 options each from
Table 1 would require 34 = 81 tests. The
specification of the cross platform testing is
stated that all pairs of combinations should
combine together at least once during the
testing process. As such, instead of testing
every combination, all individual pairs of
interactions are tested. The resulting test
suite is shown in Table 2. For instance, the
first test from Table 2 covers the following
pairs: (Intel, Windows), (Intel, Safari), (Intel,
LAN), (Windows, Safari), (Windows, LAN),
and (Safari, LAN). The entire test suite covers
every possible 2-way combination between
components. In this example, exhaustive
testing requires 81 test cases, but 2-way
testing requires merely 9 test cases. Even
though, for a small system configuration,
reduction from 81 to merely 9 test cases is
not that impressive, but consider a larger
example: a manufacturing automation
system that has 20 controls, each with 10
possible settings, a total of 1020

combinations, which is far more than a
software tester would be able to test in a
lifetime. Surprisingly, all pairs of these values
can be checked with only 180 tests if they are
carefully constructed [2].

Earlier studies (e.g. in [3, 4] have
suggested that pairwise testing (i.e. based on
two-way interaction of variables) are
effective in detecting most faults in a typical

software system. While such conclusion may
be true for some systems, it cannot be
generalized to all faults found in a software
system, especially when there are significant
interactions between variables. The National
Institute of Standards and Technology (NIST)
investigated the application of interaction
testing for four application domains: medical
devices, a Web browser, a HTTP server, and a
NASA distributed database. It was reported
that in the NASA study, 95% of the actual
faults on the test software involve 4-way
interaction [5, 6]. In fact, according to the
recommendation from NIST, almost all of the
faults detected with 6-way interaction [7].
More recently, Younis and Zamli presented
an approach to use interaction testing for t-
way testing in reverse engineering of
combinational circuit [8]. Unlike the NIST
study, Younis and Zamli demonstrate the
requirement of higher degree interaction test
suite (i.e., t=7).

Considering more than two parameter
interaction is not without difficulties. When
the parameter interaction coverage t
increases (i.e. as t > 2), the number of t-way
tuples, and hence the number of test cases,
also increases exponentially (see Table 3).

Although useful works [6, 9-12] have
been done in the recent years, these works
are mainly sequential in nature.
Parallelization can be an effective approach
to manage the aforementioned
computational cost, that is, by taking
advantage of the recent advancement of
multi-core architectures in both single
machine (tightly coupled CPUs) and loosely
coupled machines (loosely coupled CPUs).

In our previous work, we have proposed
and evaluated MIPOG [13] and its multi-
threaded (concurrent) version (i.e., target to
multi-core CPUs lay in a single machine);
namely: MC_MIPOG [12]. Complementing
and building from the earlier work, this
paper proposes an alternative parallelization
of the MIPOG; namely: Grid _MIPOG. Unlike
MC_MIPOG, Grid_MIPOG is targeted toward
loosely coupled machines (e.g., Grid). In this
paper, we report the speedup gain of
MC_MIPOG and GRID_MIPOG against the
sequential MIPOG with the increase of CPUs
as computational nodes. The remaining of
this paper is organized as follows. Section 2
highlights some related works in t-way
testing strategies. Section 3 gives an
overview of MIPOG and MC_MIPOG. Section 4
gives the design criteria for Grid_MIPOG and
the details of its implementation. Section 5
contains the evaluation section of the
speedup gains for the proposed strategy.
Finally, Section 6 states our conclusion and
suggestion for future work.

Related Works
The problem of generation test suite that
covers t-way tuples at least is considered as
NP-complete problem [14, 15]. That is, there is
no unique solution to the problem. For this
reason, many strategies do exist in the
literature. These strategies adopt either
algebraic or computational approaches [4, 16].

Grid_MIPOG: A Loosely Coupled T_way Strategy for
Combinatorial Testing
Mohammed I Younis1*, Kamal Z Zamli2

Abstracts: This paper discusses variant implementations of an MIPOG strategy based on our
earlier work. Here, we adopt more scalable design and implementation for the MIPOG strategy.
In doing so, a grid-based implementation is proposed; namely Grid_MIPOG. Unlike the previous
implementation of MIPOG and MC_MIPOG, GRID_MIPOG utilizes the computing power from
loosely coupled machines. Here, Grid_MIPOG provides more speedup and better memory
distribution as far as the numbers of parameters, number of variables, and the strength of
coverage are concerned.

Key Words: Interaction testing, combinatorial testing, parallel processing, distributed
computing, parallel algorithms.

12

 RESEARCH ARTICLE

Inventi Impact: Cloud Computing Vol. 2012, Issue 1

[E- ISSN 2230-813X, P- ISSN 2249-1309]

2012ecc022, CCC: $10 © Inventi Journals (P) Ltd
Published on Web 15/02/2012, www.inventi.in

Table 1: Four configuration parameters that have three possible settings each for an RFID-based Attendance system
CPU OS Browser Internet connectivity
Intel Windows Safari LAN

AMD Linux Firefox Wireless-LAN

Cyrix Mac Opera Modem

Table 2: A pair-wise combinatorial test configuration for an RFID-based Attendance system
Test No. CPU OS Browser Internet connectivity

1 Intel Windows Safari LAN

2 Intel Linux Firefox Wireless-LAN

3 Intel Mac Opera Modem

4 AMD Windows Opera Wireless-LAN

5 AMD Linux Safari Modem

6 AMD Mac Firefox LAN

7 Cyrix Windows Firefox Modem

8 Cyrix Linux Opera LAN

9 Cyrix Mac Safari Wireless-LAN

Table 3: Number of Tuples and test cases for varying t for a system with 10-5 parameter-valued
t # Tuples # Test cases
2 1125 45

3 15000 281

4 131250 1643

5 787500 8169

6 3281250 45168

7 9375000 186664

Table 4: π set data structure for i=4
Parameter-Control Tuples-set P4-value

110

00
01
10
11

0 101

00
01
10
11

011

00
01
10
11

110

00
01
10
11

1 101

00
01
10
11

011

00
01
10
11

110

00
01
10
11

2 101

00
01
10
11

011

00
01
10
11

13

 RESEARCH ARTICLE

Inventi Impact: Cloud Computing Vol. 2012, Issue 1

[E- ISSN 2230-813X, P- ISSN 2249-1309]

2012ecc022, CCC: $10 © Inventi Journals (P) Ltd
Published on Web 15/02/2012, www.inventi.in

Most algebraic approaches compute test
sets directly by a mathematical function
[17]. The construction of test suite by means
of pure algebraic approaches (i.e. without
searching the tuples space) can be achieved

either by applying successive transformations
to well known array or by using a product of
construction [18, 19]. For this reason,
algebraic approaches often impose
restrictions on the system configurations to

which they can be applied [20]. This
significantly limits the applicability of
algebraic approaches for software testing [21].

Unlike algebraic approaches,
computational approaches often rely on the

Table 5: π set tuples for i=4 , after deleting tuples covered by the first test case
Parameter-Control Tuples-set P4-value

110
01
10
11

0 101
01
10
11

011
01
10
11

110

00
01
10
11

1 101

00
01
10
11

011

00
01
10
11

110

00
01
10
11

2 101

00
01
10
11

011

00
01
10
11

Table 6: π set tuples for i=4 , after horizontal extension
Parameter-Control Tuples-set P4-value

 0

 1

110

00
01
10
11

2 101

00
01
10
11

011

00
01
10
11

Table 7: Speedup Gain Assessment for Group 1: CA (Size, t: 2..7, 10, 5)

t Size MIPOG MC_MIPOG Grid_MIPOG
Time Time S_up Time W/M S_up

2 45 0.074 0.09 0.822 0.098 5/2 0.755

3 281 0.327 0.281 1.163 0.317 5/2 1.03

4 1643 6.9 3.818 1.807 3.575 5/2 1.93

5 8169 44.3 21.146 2.095 13.758 5/2 3.22

6 45168 4025.442 1311.209 3.07 1056.546 5/2 3.81

7 186664 82668.19 23512.7 3.516 18049.823 5/2 4.58

14

 RESEARCH ARTICLE

Inventi Impact: Cloud Computing Vol. 2012, Issue 1

[E- ISSN 2230-813X, P- ISSN 2249-1309]

2012ecc022, CCC: $10 © Inventi Journals (P) Ltd
Published on Web 15/02/2012, www.inventi.in

generation of all tuples and search the tuple
space to generate the required test suite until
all tuples have been covered. In the case
where the number of tuples to be considered
is significantly large, adopting computational
approaches can be expensive especially in
terms of the space required to store the
tuples and the time required to explicit
enumeration. Unlike algebraic approaches,
the computational approaches can be applied
to arbitrary system configurations.
Furthermore, computational approaches are
more adaptable for constraint handling [22,
23] and test prioritization [24].

In line with the aim of this research, this
paper is focusing on a general strategy for t-
way test generation. Thus, what follows is a
survey on existing tools that supports both
pairwise and higher order t (i.e. t≥2).

Hartman et al. developed the IBM’s
Intelligent Test Case Handler (ITCH) as an
Eclipse Java plug-in tool [25]. ITCH uses a
sophisticated combinatorial algorithm to
construct the test suites for t-way testing.
Due to its exhaustive search algorithm, ITCH
execution typically takes a long time. ITCH
supports t-way test generation for 2≤t≤4.

Jenkins developed a deterministic t-way
generation strategy, called Jenny [26]. Jenny
adopts a greedy algorithm to produce a test
suite in one-test-at-a time fashion. In Jenny,
each feature has its own list of tuples. It
starts out with 1-tuple (just the feature
itself). When there are no tuple left to cover,
Jenny goes to 2-tuples and so on. Hence,
during generation instances, it is possible to
have one feature still covering 2-tuples while
another feature is already working on 3-
tuples. This process goes on until all tuples
are covered. Jenny has been implemented as

an MSDOS tool using C programming
language. Jenny supports t-way test
generation for 2≤t≤6.

Complementary to the aforementioned
work, significant efforts also involve
extending existing pairwise strategies (e.g. in
the case of AETG and IPO) to support t-way
testing. AETG builds a test set “one-test-at-a-
time” until all tuples are covered [27, 28]. In
contrast, IPO covers “one-parameter-at-a-
time” (i.e. through horizontal and vertical
extension mechanisms), achieving a lower
order of complexity than that of AETG [14].
AETG is a commercialized tool that supports
t-way test generation for 2≤t≤6.

Arshem developed a freeware Java-based
t-way testing tool called Test Vector
Generator (TVG) based on extension of AETG
to support t-way testing [29]. Similar efforts
are also undertaken by Bryce et al. to
enhance AETG for t-way testing [11, 30]. TVG
supports t-way test generation for 2≤t≤6.

Williams implemented a Java-based t-
way test tool called TConfig (Test
Configuration) based on IPO [31, 32]. Later,
IPO is generalized into IPOG for supporting t-
way testing [9]. A number of variants have
also been developed to improve the IPOG’s
performance. These variants including:
IPOG-D [21], and IPOG-F [33]. Currently,
IPOG, IPOG-D, IPOG-F are integrated into a
Java-based tool called ACTS (Advanced
Combinatorial Testing Suite) [34]. ACTS
supports t-way test generation for 2≤t≤6.

More recently, Younis and Zamli
proposed another variant to IPOG called
Modified IPOG (MIPOG) [12]. Unlike earlier
works, MIPOG adopts variants extension
algorithms during test suite generation. The
net effect of the variant extension algorithms

in MIPOG is twofold. First, MIPOG can always
get less test cases which would be at least the
same size or even smaller than that of IPOG.
Secondly, there are no dependencies
between subsequently generated test values,
thus, permitting the possibility of
parallelization. MIPOG supports t-way test
generation for 2≤t≤7 and reported to support
even higher t for small system of
configuration (up to t=12) [12].

Seroussi and Bshouty suggest that the
problem of finding the minimum size of test
suite for an arbitrary set of tuples is at least
as hard as this problem [35] (i.e. NP-hard
problem).Therefore, it is often unlikely that
an efficient strategy exists that can always
generate optimal test set (i.e. each t-way
interaction is covered by minimum number
of test cases). As a benchmarking exercise,
Colbourn web site has collected the current
best known upper bounds (termed CAN (t, p,
v) where 2 ≤ t ≤ 6) [36], regardless of the
strategies used. Referring to Colbourn’s web
site, it should be noted that all the upper
bounds are found in one-by-one basis, that is,
no single strategy could be applied and yield
the best test size in every configuration (i.e.
due to NP-complete and NP-hard problems).
As such, even a small contribution over
existing tools is a daunting task to
accomplish.

MIPOG and MC_MIPOG Overview
The MIPOG strategy constructs a t-way test
set configuration for the first t parameters.
Then, it extends the test set to construct a t-
way test set for the t+1 parameters, after
which it continues to extend the test set until
all t-way test set has been constructed for all
the parameters of the system. For a system

Table 8: Speedup Gain Assessment for Group 2: CA (Size, 4, P: 5..15, 5)

P Size MIPOG MC_MIPOG Grid_MIPOG
Time Time S_up Time W/M S_up

5 625 0.128 0.15 0.8533 0.162 5/2 0.79

6 625 0.31 0.269 1.152 0.276 5/2 1.12

7 1125 0.778 0.57 1.365 0.563 5/2 1.38

8 1348 1.981 1.272 1.557 1.294 5/2 1.53

9 1543 3.735 2.275 1.642 2.197 5/2 1.7

10 1643 6.9 3.818 1.807 3.575 5/2 1.93

11 1722 10.642 5.803 1.833 5.216 5/2 2.04

12 1837 19.39 10.298 1.883 8.394 5/2 2.31

13 1956 44.169 21.171 2.086 16.605 5/2 2.66

14 2051 71.104 33.213 2.14 23.78 5/2 2.99

15 2150 143.29 60.931 2.352 43.553 5/2 3.29

Table 9: Speedup Gain Assessment for Group 3: CA (Size, 4, 10, V: 2..10)

V Size MIPOG MC_MIPOG Grid_MIPOG
Time Time S_up Time W/M S_up

2 43 0.148 0.141 1.05 0.164 2/1 0.9

3 217 0.408 0.383 1.065 0.4 3/1 1.02

4 637 1.39 0.983 1.414 1.061 4/1 1.31

5 1643 6.9 3.818 1.807 3.575 5/2 1.93

6 3657 68.32 31.484 2.17 26.076 6/2 2.62

7 5927 70.495 31.755 2.22 17.846 7/2 3.95

8 11355 4767.778 1538.719 3.099 703.212 8/2 6.78

9 18036 5203.01 1605.372 3.241 657.693 9/3 7.911

10 27306 56786.346 16220.036 3.501 6750.635 10/3 8.412

15

 RESEARCH ARTICLE

Inventi Impact: Cloud Computing Vol. 2012, Issue 1

[E- ISSN 2230-813X, P- ISSN 2249-1309]

2012ecc022, CCC: $10 © Inventi Journals (P) Ltd
Published on Web 15/02/2012, www.inventi.in

with p parameters, v values, and t degree
interaction (t≤p), the MIPOG strategy is
illustrated in Fig. 2.

To illustrate how the MIPOG works and
how it can be parallelized, a system with 4
parameters (three 2-valued and one 3-valued
parameter) is considered. Fig. 3 shows the
process of generating a 3-way test set. The
test set (ts) starts with the eight
combinations of P1P2P3 (line 3 in Fig. 2).
Next (i=4), the set of t-way combinations (π)
of values involving parameter P4 and two
parameters among the first three parameters
(P1P2P3) is constructed as tabulated in
Table 4 with parallelism in mind. Referring to
Table 4, the first column (“Parameter-
Control”) presents the parameter control
which is used to select two parameters from
P1P2P3 to be interacted with P4. The second
column (“Tuple-set”) presents the
parameter-values for the selected two
parameters among the first three
parameters. Finally, the last column (“P4-

value”) presents the shared value for each
tuple-set.

Now, return back to out illustrative
example in Fig. 3, in horizontal extension, the
first test case in ts, this test case starts with
P1P2P3=000. According to Table 4, there are
three possible values for P4 (i.e., 0,1 and 2).
The MIPOG determines the weight (i.e., the
number of covered tuples). In the case of
P4=0 (i.e., P1P2P3P4=0000); P4=0, there are
three parameter control in the first column
(110, 101, and 011) that presents the
parameters (P1P2, P1P3, and P2P3)
respectively, and thus, the test case is
decomposed into the following tuples {00,
00, and 00} respectively. Each of the
decomposed tuples is contained in tuple-set
column. Therefore, the weight of this
candidate test case is 3. Similarly, the next
possible values of P4 are 1 and 2. In the case
of P4=1 (i.e., P1P2P3P4=0001); P4=1, there
are three parameter control in the first
column (110, 101, and 011) that presents the

parameters (P1P2, P1P3, and P2P3)
respectively , and thus, the test case is
decomposed into the following tuples {00,
01, and 01} respectively. Each of the
decomposed tuples is contained in tuple-set
column. Therefore, the weight of this
candidate test case is also 3. Similarly, the
next possible value of P4 is 2. (i.e.,
P1P2P3P4=0002); P4=1, there are three
parameter control in the first column (110,
101, and 011) that presents the parameters
(P1P2, P1P3, and P2P3) respectively, and
thus, the test case is decomposed into the
following tuples {00, 02, and 02}
respectively. Each of the decomposed tuples
is contained in tuple-set column. Therefore,
the weight of this candidate test case is also
3. Thus, MIPOG engine selects parameter
value witch constructs a test case that has
the first maximum weight (i.e., 0000). After
adding the selected parameter value, the
MIPOG engine deletes the covered tuples
(i.e., {00, 00, and 00} for P4=0, and

Figure 1: Advanced Option Dialogue for Microsoft Internet Explorer

Figure 2: MIPOG strategy

Figure 3: Generation of Test Set Using MIPOG

Figure 4: Algorithm for Grid Cordlet

16

 RESEARCH ARTICLE

Inventi Impact: Cloud Computing Vol. 2012, Issue 1

[E- ISSN 2230-813X, P- ISSN 2249-1309]

2012ecc022, CCC: $10 © Inventi Journals (P) Ltd
Published on Web 15/02/2012, www.inventi.in

parameter-control (110, 101, and 011)
respectively). The remaining π set tuples is
given in Table 5.

For the second test case in ts, this test
case starts with P1P2P3=001. According to
Table 5, there are three possible values for
P4 (i.e., 0,1 and 2). Again, the corresponding
weights of these values are (2, 3, and 3)
respectively. Thus, the constructed test case
is 0011, the MIPOG engine deletes the
covered tuples (i.e., {00, 01, and 01} for P4=1,
and parameter-control (110, 101, and 011)
respectively). The process of horizontal
extension is continued for the third till eighth
test cases in ts; yields the selection the
following values for P4 (1,0,1,0,0,and
1)respectively. The remaining π set tuples is
given in Table 6.

In vertical extension for P4=0 and 1, the
remaining π set tuples are empty. As such,
the first and second partial tests set are
empty. Now, the third partial test set (i.e., for
P4=2) is constructed as follows. Referring to

Table 6, the π set tuples already arranged in
descend order (according to the number of
tuples for each parameter control). The
maximum weight (number of parameter
control is 3). The first tuple is 00, with the
parameter-control 110. Here, the MIPOG
search engine expands the tuple to be 00*2
(i.e., by adding * value for corresponding 0-
vlaue in parameter control, and append the
parameter value (2) at the end, * can be
further optimized by assigning value to it).
Next, parameter-control is 101. Thus, the
expanded tuple (00*2) can be combined with
the first tuple in tuple set (i.e., 00) yields
0002. This candidate test case has a
weight=3. Therefore, it is added to test suite.
Then, the MIPOG engine deletes the tuples
covered by the generated test case (i.e.,
0002). This process is continued until π set is
empty (line 11-16 in Fig. 2).

Note that the proposed data structure for
π set in the MIPOG permits the
parallelization as follows. Each parameter

values can be generated and laid in a
separate processing element. Each
processing element can handle the
computation of the horizontal and vertical
extension for particular value. In our
illustrative example, there are three possible
values for P4. Thus, the π set and its
corresponding computation can be
distributed to three processing elements.
These distribution doses not affect the
process of generation, and hence, the
generated test suite is identical to sequential
implementation.

Building from MIPOG, the MC_MIPOG has
been proposed in [12]. Here, the processing
elements are distributed in tightly-coupled
(Multicore) CPUs. The evaluation, speedup
gain for adopting MC_MIPOG, and
comparisons with other existing tools are
well elaborated in [12].

In MC_MIPOG strategy the computation
and memory lay in logically shared memory
and CPUs. However, the physical memory is
bounded to the main memory (RAM) of the
tightly-coupled system. In addition, the trend
in speedup is also bounded by the number of
CPUs in the system. To overcome these
obstacles, we propose an alternative
distribution of MIPOG aimed for loosely
coupled system.

Grid_MIPOG
Like MC_MIPOG, GRID_MIPOG strategy
distributes the computational processes and
memory into pieces that are distributed into
loosely coupled machines. The complete
implementation of GRID_MIPOG strategy is
actually based on the following design
criteria:

� Memory storages for the tuples and their
related computation (i.e., horizontal and
vertical extension) are distributed to
relatively independent cells, called
worklets.

� The worklets can be sited in a single
machine or multiple machines (i.e. for
scalability and distribution purposes).

� The selected test set is stored into a
shared memory controlled by test
generation server, called cordlet.

� The uses of a cordlet are two-fold: as a
coordinator and a server.
For clarity, the complete algorithms for

cordlet and worklet are given in Fig. 4 and
Fig. 5 respectively.

For our illustrative example (discussed in
Section II), The Cordlet waits for three
Worklets to be connected. After the Worklets
are connected, the Cordlet assigns values to
the Woklet (Worklet0, Worklet1, and
Worklet2). For instance the Cordlet
broadcast P1P2P3P4 and t=3 to the
Worklets. In horizontal extension, the
Cordlet broad cast the test size (8). Then for
each test case in ts, the Cordlet broadcast the
test case to all Worklets. For the first test
case, the Cordlet broadcasts test case 000 to
all Worklets. After that, the Cordlet reads the
weights from Worklet0, Worklet1, and
Worklet2, these weights values are 3. Then

Figure 5: Algorithm for Worklet

Typical CPU Activities During MIPOG Execution

Typical CPU Activities During MC_MIPOG and
G_MIPOG Execution

Figure 6: The CPU Activities

17

 RESEARCH ARTICLE

Inventi Impact: Cloud Computing Vol. 2012, Issue 1

[E- ISSN 2230-813X, P- ISSN 2249-1309]

2012ecc022, CCC: $10 © Inventi Journals (P) Ltd
Published on Web 15/02/2012, www.inventi.in

the Cordlet add 0 (i.e., construct test case
0000). Next, the Cordlet issues delete
command to Worklet0, and cancel
commands to Worklet1 and Worklet2. This
process is continued for the remaining test
cases in horizontal extension. In vertical
extension, The Cordlet receives an empty
partial test set from Worklet0 and Worklet1.
Finally, The Cordlet receives 4 test cases
from Worklet2, and then adds these test
cases to ts. Thus, Grid_MIPOG produces the
same test suite as in MIPOG.

Evaluation and Discussion
In order to assess the speedup gain, we apply
MIPOG, MC_MIPOG, and GRID_MIPOG to the
same 3 experimental groups adopted from
[9, 12] as follows.

� Group 1: The number of parameters (P)
and the values (V) are constant at10 and
5, but the coverage strength (t) varies
from 2 to 7.

� Group 2: The coverage strength (t) and
the values (V) are constant to 4 and 5, but
the number of parameter (P) is varied
from 5 to 15.

� Group 3: The number of parameter (P)
and the coverage strength (t) are constant
from t to 10 and 4 respectively, but the
values (V) are varied from 2 to 10.
Here, speedup is defined as ratio of the

time taken by the sequential MIPOG
algorithm to the time taken by the parallel
algorithm. In our evaluation, we adopt two
system configuration and running
environments. The first environment is a
standalone system for MIPOG and MC_MIPOG
execution consisting of Linux Centos OS with
2.4 GHz Core 2 Quad CPU [37], 2 GB RAM,
with JDK 1.5 installed. The execution within
this standalone environment is necessary as
the base execution time result for MIPOG and
MC_MIPOG to be compared with that of
GRID_MIPOG. As discussed earlier, unlike
MIPOG which has sequential algorithm, the
MC_MIPOG algorithm adopts tightly coupled
approach (i.e. concurrent algorithm) over the
quad CPUs. The second environment is
intended for Grid_MIPOG execution. The
environment consists of a loosely coupled
GRID environment, that is, four machines act
as a cluster (one for Cordlet as master, and
others are slaves for Worklets). Here, each
machine has identical specification for the
standalone machine. As such, the
experimental comparison amongst MIPOG,
MC_MIPOG, and Grid _MIPOG is considered
fair. Apart from executing within the same
system configuration and running
environment, the data structure and
implementation language of the strategies
are identical. The only differences are in
terms of whether or not the employed
algorithms are sequential, concurrent, or
distributed. Tables 7 through 9 highlight the
comparative results in terms of execution
time and speedup gain amongst MIPOG,
MC_MIPOG, and Grid_MIPOG. The columns
“S_up” and “W/M” refer to speedup and
workers per machines respectively. Note that

the execution time is in seconds, and MIPOG,
MC_MIPOG, and Grid_MIPOG produce the
same test set in all cases.

The CPU activities during MIPOG,
MC_MIPOG, and G_MIPOG must also exhibit
the efficient use of the multi-cores CPUs. As
depicted in Fig. 6, the typical CPU activities
for both MIPOG and MC_MIPOG during all the
experimental groups. Here, due to its
sequential nature MIPOG strategy utilizes
only 25 % from the total number of CPU (or
1/N, where N=Number of CPUs) during
execution, whilst the MC_MIPOG and
G_MIPOG utilizes almost all the processing
power of each cores (i.e. all core utilization is
> 90%).

Overall, MC_MIPOG appears to perform
slightly better than Grid_MIPOG for small
systems due to heavy networking and inter-
process communications overhead as
compared to simple thread synchronization
in a single system. However, Grid_MIPOG
performs better than MC_MIPOG for higher
degree interactions (typically t>3), and
higher number of parameters (typically >6)
and high number of values (typically >4).
Extrapolating and performing curve fitting of
the results from Tables 7 to 9, the trends in
both MC_MIPG and Grid_MIPOG are to
achieve maximum theoretical speedup. The
maximum theoretical speedup is equal to the
number of variables in the case of MC_MIPOG
and Grid_MIPOG (assume the number of
CPUs available>=number of variables);
otherwise, the maximum theoretical speedup
equals to the number of CPUs. The maximum
theoretical speedup is the trend of
parallelism as far as the number of variables
(V) is concerned. Also, the speedup grows
linearly towards the maximum theoretical
speed up, as far as the number of parameters
(P) is concerned. Finally, the speedup grows
logarithmically towards the maximum
theoretical speedup, as far as the strength of
coverage (t) is concerned. Specifically,
Grid_MIPOG is scale better than MC_MIPOG
as far as the number of parameter values is
concerned. For instance, the last column in
Table 9, the maximum theoretical speedup is
4 and 10 for MC_MIPOG and Grid_MIPOG
respectively, whilst the practical speedup is
3.501 and 8.412 respectively. This increasing
in speedup as far as the number of parameter
values is concerned can lead to produce less
execution time for large values as compared
with small values. For instance, consider the
fifth and sixth rows in Table 9. In the case of
the G_MIPOG strategy, the speedup for V=6,
and 7 are 2.62, and 3.95 respectively. This is
the reason why the execution time for V=7 is
less than the execution time for V=6 (i.e.
17.846 versus 26.076 respectively, see Table
9).

CONCLUSION
In this paper, we investigated and evaluated a
parallel strategy called Grid_MIPOG for t-way
test data generation on loosely coupled
architecture. Our results indicate that the
distributed implementation scales well against

concurrent implementation (MC_MIPOG) and
sequential predecessor (MIPOG). As computer
manufactures make multi-core CPUs
pervasively available within reasonable costs,
harnessing this technology is no longer a
luxury but a viable and useful option.

The current implementation of the
MIPOG and its family takes on parameter at a
time. In fact, as the computing powers
duplicated every 18 months according to
Moore's law, it is evidence that taking more
than one parameter at a time (e.g. 2
parameters) is also feasible. This research
avenue is considered as a part of our future
work that definitely can lead to more
speedup and perhaps more optimal test size.

Finally, much research work has been
done in this field in the last decade; the
adoption of these strategies for studying and
testing real life systems (e.g. software,
hardware, medical, genes) has not been
widespread. For these reasons, more
research into the algorithms, techniques, and
methodologies are required to facilitate its
adoption in the main stream of software
engineering.

REFERENCES AND NOTES
1. R.C. Bryce, Y. Lei, D.R. Kuhn, and R. Kacker,

“Combinatorial Testing,” Handbook of Research
on Software Engineering and Productivity
Technologies: Implications of Globalization, M.
Ramachandran, and R.A.d. Carvalho eds., IGI
Global, pp. 196-208, 2010.

2. R. Kuhn, R. Kacker, Y. Lei, and J. Hunter,
“Combinatorial Software Testing,” IEEE
Transaction on Computer, vol. 42, no. 8, pp. 94-
96, 2009.

3. D.M. Cohen, S.R. Dalal, A. Kajla, and G.C. Patton,
“The Automatic Efficient Test Generator (AETG)
System,” Proceedings of the 5th International
Symposium on Software Reliability
Engineering, IEEE Computer Society, pp. 303 -
309, 1994.

4. M.B. Cohen, C.J. Colbourn, P.B. Gibbons, and
W.B. Mugridge, “Constructing Test Suites for
Interaction Testing,” Proceedings of the 25th
IEEE International Conference on Software
Engineering, IEEE Computer Society, pp. 38-48,
2003.

5. D.R. Kuhn, and V. Okun, “Pseudo Exhaustive
Testing For Software,” Proceedings of the 30th
NASA/IEEE Software Engineering Workshop,
IEEE Computer Society, pp. 153-158, 2006.

6. R. Kuhn, Y. Lei, and R. Kacker, “Practical
Combinatorial Testing: Beyond Pairwise,” IEEE
IT Professional, vol. 10, no. 3, pp. 19-23, 2008.

7. M. Ellims, D. Ince, and M. Petre, “The
Effectiveness of T-Way Test Data Generation,”
Springer LNCS 5219, vol. SAFECOMP 2008, pp.
16–29, 2008.

8. M.I. Younis, and K.Z. Zamli, “Assessing
Combinatorial Interaction Strategy for Reverse
Engineering of Combinational Circuits,” IEEE
Symposium on Industrial Electronics and
Applications (ISIEA 2009) , pp. 473-478, 2009.

9. Y. Lei, R. Kacker, D.R. Kuhn, V. Okun, and J.
Lawrence, “IPOG: A General Strategy for T-Way
Software Testing,” Proceedings of the 14th
Annual IEEE International Conference and
Workshops on the Engineering of Computer-
Based Systems (ECBS2007), IEEE Computer
Society, pp. 549-556, 2007.

10. C.J. Colbourn, G. Keri, P.P.R. Soriano, and J.-C.
Schlage-Puchta, “Covering and radius-covering

18

 RESEARCH ARTICLE

Inventi Impact: Cloud Computing Vol. 2012, Issue 1

[E- ISSN 2230-813X, P- ISSN 2249-1309]

2012ecc022, CCC: $10 © Inventi Journals (P) Ltd
Published on Web 15/02/2012, www.inventi.in

arrays: Constructions and classification,”
Discrete Applied Mathematics, vol. 158, no. 11,
pp. 1158-1180, 2010.

11. R.C. Bryce, and C.J. Colbourn, “A Density-based
Greedy Algorithm for Higher Strength Covering
Arrays,” Software Testing, Verification, and
Reliability, vol. 19, no. 1, pp. 37-53, 2009.

12. M.I. Younis, and K.Z. Zamli, “MC-MIPOG: A
Parallel t-Way Test Generation Strategy for
Multicore Systems,” ETRI Journal, vol. 32, no. 1,
pp. 73-82, 2010.

13. M.I. Younis, and K.Z. Zamli, “MIPOG - An
Efficient t-Way Minimization Strategy for
Combinatorial Testing,” IJCTE, vol. 3, no. 3, pp.
388-397, 2011.

14. K.C. Tai, and Y. Lei, “A Test Generation Strategy
for Pairwise Testing,” IEEE Transactions on
Software Engineering, vol. 28, no. 1, pp. 109-
111, 2002.

15. T. Shiba, T. Tsuchiya, and T. Kikuno, “Using
Artificial Life Techniques to Generate Test Cases
for Combinatorial Testing,” Proceedings of the
28th Annual International Computer Software
and Applications Conference (COMPSAC’04),
IEEE Computer Society, pp. 72-77, 2004.

16. A. Hartman, and L. Raskin, “Problems and
Algorithms for Covering Arrays,” Discrete
Mathematics, vol. 284, no. 1-3, pp. 149-156,
2004.

17. M. Grindal, J. Offutt, and S. Andler, “Combination
Testing Strategies: a Survey,” Software Testing,
Verification, and Reliability, vol. 15, no. 3, pp.
167-199, 2005.

18. C.J. Colbourn, S.S. Martirosyan, G.L. Mullen, D.
Shasha, G.B. Sherwood, and J.L. Yucas, “Products
of Mixed Covering Arrays of Strength Two,”
Journal of Combinatorial Designs, vol. 14, no. 2,
pp. 124–138, 2006.

19. G.B. Sherwood, “Pairwise Testing Comes of
Age,” Testcover Inc., 2008.

20. C. Yilmaz, M.B. Cohen, and A. Porter, “Covering
Arrays for Efficient Fault Characterization in
Complex Configuration Spaces,” IEEE
Transactions on Software Engineering, vol. 31,
no. 1, pp. 20–34, 2006.

21. Y. Lei, R. Kacker, D.R. Kuhn, V. Okun, and J.
Lawrence, “IPOG/IPOG-D: Efficient Test
Generation for Multi-way Combinatorial
Testing,” Software Testing, Verification, and
Reliability, vol. 18, no. 3, pp. 125-148, 2008.

22. M. Grindal, J. Offutt, and J. Mellin, “Conflict
Management when Using Combination
Strategies for Software Testing,” Proceedings of
the 18th Australian Software Engineering
Conference (ASWEC 2007), pp. 1-10, 2007.

23. M.B. Cohen, M.B. Dwyer, and J. Shi, “Interaction
Testing of Highly-Configurable Systems in the
Presence of Constraints,” Proceedings of the
International Symposium on Software Testing
and Analysis (ISSTA 2007), ACM Press, pp. 129–
139, 2007.

24. R.C. Bryce, and C.J. Colbourn, “Prioritized
Interaction Testing for Pairwise Coverage with
Seeding and Avoids,” Information and Software
Technology Journal, vol. 48, no. 10, pp. 960-970,
2006.

25. A. Hartman, T. Klinger, and L. Raskin, “WHITCH:
IBM Intelligent Test Configuration Handler,”
IBM Haifa and Watson Research Laboratories,
pp. 1-47, 2005.

26. B. Jenkins, “Jenny Test Tool,” available from
http://www.burtleburtle.net./bob/math/jenny.
html, last accessed on April, 2011.

27. D.M. Cohen, S.R. Dalal, J. Parelius, and G.C.
Patton, “The Combinatorial Design Approach to
Automatic Test Generation,” IEEE Software, vol.
13, no. 5, pp. 83-88, 1996.

28. D.M. Cohen, S.R. Dalal, M.L. Fredman, and G.C.
Patton, “The AETG System: An Approach to
Testing based on Combinatorial Design,” IEEE

Transactions on Software Engineering, vol. 23,
no. 7, pp. 437–443, 1997.

29. J. Arshem, “Test Vector Generator Tool (TVG),”
available from http://sourceforge.net/
projects/tvg, last accessed on October, 2011.

30. R.C. Bryce, C.J. Colbourn, and M.B. Cohen, “A
Framework of Greedy Methods for Constructing
Interaction Test Suites,” Proceedings of the 27th
IEEE International Conference on Software
Engineering, pp. 146-155, 2005.

31. A.W. Williams, “Software Component Interaction
Testing: Coverage Measurment and Generation of
the Configurations (PhD Thesis),” School of
Information Technology and Engineering,
University of Ottawa, Ottawa, Canada, 2002.

32. A.W. Williams, J.H. Ho, and A. Lareau, “TConfig
Test Tool Version 2.1,” 2003, available from
http://www.site.uottawa.ca/~awilliam, last
access on December 2011.

33. M. Forbes, J. Lawrence, Y. Lei, R.N. Kacker, and
D.R. Kuhn, “Refining the In-Parameter-Order
Strategy for Constructing Covering Arrays,”
Journal of Research of the National Institute of
Standards and Technology, vol. 113, no. 5, pp.
287-297, 2008.

34. NIST, “Automated Combinatorial Testing for
Software,” available from http://csrc.nist.gov/
groups /SNS/acts, last accessed on September,
2011.

35. G. Seroussi, and N.H. Bshouty, “Vector Sets for
Exhaustive Testing of Logic Circuits,” IEEE
Transactions on Information Theory, vol. 34, pp.
513-522, 1988.

36. C.J. Colbourn, “Covering Array Tables,” available
from http://www.public.asu.edu /ccolbou/
src/tabby, last access on January 2012.

37. Intel, “Intel Core 2 Quad Processors,” available
at http://www.intel.com/products /processor/
core2quad / index.htm, last accessed on
December, 2011.

19

