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INTRODUCTION 
T-way testing has been actively investigated 
for both software and hardware testing due 
to its ability to efficiently minimize the test 
size systematically. However, one challenge 
in this area is dealing with the combinatorial 
explosion problem, which typically requires 
a very expensive computational process to 
find a good test set that covers all the 
combinations for a given interaction strength 
(t).  

As an illustration of combinatorial 
explosion problem, consider the option 
dialog Microsoft Internet Explorer software 
(see Fig. 1). Even if only “Advanced” tab 
option is considered, there are already 54 
possible configurations to be tested. With the 
exception of searching and under line links 
which take 4 and 3 possible values 
respectively,  each configuration can take 
two values (i.e. checked or unchecked). Here, 
there are 254x4x3 combinations of test cases 
to evaluate. Assuming that it takes only one 
second for one test case, then it would 
require nearly 68x107 years for a complete 
test of the “Advanced” tab option. 

Similar situation can be observed when 
testing a typical hardware product. As a 
simple example, consider a hardware 
product with 30 on/off switches. To test all 
possible combination would require 230 test 
cases. If the time required for one test case is 
one second, then it would take nearly 34 
years for a complete test.  Furthermore, in 
hardware testing it is required to test each 
instance of hardware unit independently. For 
instance, suppose a hardware production 
line requires testing one million switches. It 
is clear that testing every possible 
combination is impossible due to resources 
as well as time to market constraints. Thus, 
there is a need of a sampling strategy for 
software and hardware testing.  

The simplest approach tests all values at 
least once. The most thorough approach 
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exhaustively tests all parameter-value 
combinations. While testing only individual 
values may not be enough, exhaustive testing 
of all possible combinations is not always 
feasible. t-way strategies (i.e. as sampling 
strategies) are a reasonable alternative that 
falls in between these two extremes [1]. 
Here, the t-way strategy (also termed 
Combinatorial Interaction Testing) can 
systematically reduce the number of test 
data by selecting a subset from exhaustive 
testing combination based on the strength of 
interaction coverage (t) such that each t-wise 
combination of variables is covered at least 
once. 

Consider a cross platform testing to be 
performed for an RFID-based attendance 
system. The system has four configuration 
parameters of interest as shown in Table 1. 
There are three CPU types; three types of OS; 
three types of browsers; and three Internet 
connectivity options. To exhaustively test all 
combinations of the four configuration 
parameters that have 3 options each from 
Table 1 would require 34 = 81 tests. The 
specification of the cross platform testing is 
stated that all pairs of combinations should 
combine together at least once during the 
testing process. As such, instead of testing 
every combination, all individual pairs of 
interactions are tested. The resulting test 
suite is shown in Table 2. For instance, the 
first test from Table 2 covers the following 
pairs: (Intel, Windows), (Intel, Safari), (Intel, 
LAN), (Windows, Safari), (Windows, LAN), 
and (Safari, LAN). The entire test suite covers 
every possible 2-way combination between 
components. In this example, exhaustive 
testing requires 81 test cases, but 2-way 
testing requires merely 9 test cases. Even 
though, for a small system configuration, 
reduction from 81 to merely 9 test cases is 
not that impressive, but consider a larger 
example: a manufacturing automation 
system that has 20 controls, each with 10 
possible settings, a total of 1020 

combinations, which is far more than a 
software tester would be able to test in a 
lifetime. Surprisingly, all pairs of these values 
can be checked with only 180 tests if they are 
carefully constructed [2]. 

Earlier studies (e.g.  in [3, 4] have 
suggested that pairwise testing (i.e. based on 
two-way interaction of variables) are 
effective in detecting most faults in a typical 

software system. While such conclusion may 
be true for some systems, it cannot be 
generalized to all faults found in a software 
system, especially when there are significant 
interactions between variables. The National 
Institute of Standards and Technology (NIST) 
investigated the application of interaction 
testing for four application domains: medical 
devices, a Web browser, a HTTP server, and a 
NASA distributed database. It was reported 
that in the NASA study, 95% of the actual 
faults on the test software involve 4-way 
interaction [5, 6]. In fact, according to the 
recommendation from NIST, almost all of the 
faults detected with 6-way interaction [7]. 
More recently, Younis and Zamli presented 
an approach to use interaction testing for t-
way testing in reverse engineering of 
combinational circuit [8]. Unlike the NIST 
study, Younis and Zamli demonstrate the 
requirement of higher degree interaction test 
suite (i.e., t=7). 

Considering more than two parameter 
interaction is not without difficulties. When 
the parameter interaction coverage t 
increases (i.e. as t > 2), the number of t-way 
tuples, and hence the number of test cases, 
also increases exponentially (see Table 3).  

Although useful works [6, 9-12] have 
been done in the recent years, these works 
are mainly sequential in nature. 
Parallelization can be an effective approach 
to manage the aforementioned 
computational cost, that is, by taking 
advantage of the recent advancement of 
multi-core architectures in both single 
machine (tightly coupled CPUs) and  loosely 
coupled machines (loosely coupled CPUs).  

In our previous work, we have proposed 
and evaluated MIPOG [13] and its multi-
threaded (concurrent) version (i.e., target to 
multi-core CPUs lay in a single machine); 
namely: MC_MIPOG [12]. Complementing 
and building from the earlier work, this 
paper proposes an alternative parallelization 
of the MIPOG; namely: Grid _MIPOG. Unlike 
MC_MIPOG, Grid_MIPOG is targeted toward 
loosely coupled machines (e.g., Grid). In this 
paper, we report the speedup gain of 
MC_MIPOG and GRID_MIPOG against the 
sequential MIPOG with the increase of CPUs 
as computational nodes.  The remaining of 
this paper is organized as follows. Section 2 
highlights some related works in t-way 
testing strategies. Section 3 gives an 
overview of MIPOG and MC_MIPOG. Section 4 
gives the design criteria for Grid_MIPOG and 
the details of its implementation. Section 5 
contains the evaluation section of the 
speedup gains for the proposed strategy. 
Finally, Section 6 states our conclusion and 
suggestion for future work. 
 
Related Works 
The problem of generation test suite that 
covers t-way tuples at least is considered as 
NP-complete problem [14, 15]. That is, there is 
no unique solution to the problem. For this 
reason, many strategies do exist in the 
literature. These strategies adopt either 
algebraic or computational approaches [4, 16].  
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Table 1: Four configuration parameters that have three possible settings each for an RFID-based Attendance system 
CPU OS Browser Internet connectivity 
Intel Windows Safari LAN 

AMD Linux Firefox Wireless-LAN 

Cyrix Mac Opera Modem 

Table 2: A pair-wise combinatorial test configuration for an RFID-based Attendance system 
Test No. CPU OS Browser Internet connectivity 

1 Intel Windows Safari LAN 

2 Intel Linux Firefox Wireless-LAN 

3 Intel Mac Opera Modem 

4 AMD Windows Opera Wireless-LAN 

5 AMD Linux Safari Modem 

6 AMD Mac Firefox LAN 

7 Cyrix Windows Firefox Modem 

8 Cyrix Linux Opera LAN 

9 Cyrix Mac Safari Wireless-LAN 

Table 3: Number of Tuples and test cases for varying t for a system with 10-5 parameter-valued 
t # Tuples # Test cases 
2 1125 45 

3 15000 281 

4 131250 1643 

5 787500 8169 

6 3281250 45168 

7 9375000 186664 

Table 4: π set data structure for i=4 
Parameter-Control Tuples-set P4-value 

110 

00 
01 
10 
11 

0 101 

00 
01 
10 
11 

011 

00 
01 
10 
11 

110 

00 
01 
10 
11 

1 101 

00 
01 
10 
11 

011 

00 
01 
10 
11 

110 

00 
01 
10 
11 

2 101 

00 
01 
10 
11 

011 

00 
01 
10 
11 
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Most algebraic approaches compute test 
sets directly by a mathematical function 
[17]. The construction of test suite by means 
of pure algebraic approaches (i.e.  without 
searching the tuples space) can be achieved 

either by applying successive transformations 
to well known array or by using a product of 
construction [18, 19]. For this reason, 
algebraic approaches often impose 
restrictions on the system configurations to 

which they can be applied [20]. This 
significantly limits the applicability of 
algebraic approaches for software testing [21].  

Unlike algebraic approaches, 
computational approaches often rely on the 

Table 5: π set tuples for i=4 , after deleting tuples covered by the first test case 
Parameter-Control Tuples-set P4-value 

110 
01 
10 
11 

0 101 
01 
10 
11 

011 
01 
10 
11 

110 

00 
01 
10 
11 

1 101 

00 
01 
10 
11 

011 

00 
01 
10 
11 

110 

00 
01 
10 
11 

2 101 

00 
01 
10 
11 

011 

00 
01 
10 
11 

Table 6: π set tuples for i=4 , after horizontal extension 
Parameter-Control Tuples-set P4-value 

  0 

  1 

110 

00 
01 
10 
11 

2 101 

00 
01 
10 
11 

011 

00 
01 
10 
11 

Table 7: Speedup Gain Assessment for Group 1: CA (Size, t: 2..7, 10, 5) 

t Size MIPOG MC_MIPOG Grid_MIPOG 
Time Time S_up Time W/M S_up 

2 45 0.074 0.09 0.822 0.098 5/2 0.755 

3 281 0.327 0.281 1.163 0.317 5/2 1.03 

4 1643 6.9 3.818 1.807 3.575 5/2 1.93 

5 8169 44.3 21.146 2.095 13.758 5/2 3.22 

6 45168 4025.442 1311.209 3.07 1056.546 5/2 3.81 

7 186664 82668.19 23512.7 3.516 18049.823 5/2 4.58 
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generation of all tuples and search the tuple 
space to generate the required test suite until 
all tuples have been covered.  In the case 
where the number of tuples to be considered 
is significantly large, adopting computational 
approaches can be expensive especially in 
terms of the space required to store the 
tuples and the time required to explicit 
enumeration.  Unlike algebraic approaches, 
the computational approaches can be applied 
to arbitrary system configurations.  
Furthermore, computational approaches are 
more adaptable for constraint handling [22, 
23] and test prioritization [24].  

In line with the aim of this research, this 
paper is focusing on a general strategy for t-
way test generation. Thus, what follows is a 
survey on existing tools that supports both 
pairwise and higher order t (i.e. t≥2).  

Hartman et al. developed the IBM’s 
Intelligent Test Case Handler (ITCH) as an 
Eclipse Java plug-in tool [25]. ITCH uses a 
sophisticated combinatorial algorithm to 
construct the test suites for t-way testing. 
Due to its exhaustive search algorithm, ITCH 
execution typically takes a long time. ITCH 
supports t-way test generation for 2≤t≤4. 

Jenkins developed a deterministic t-way 
generation strategy, called Jenny [26]. Jenny 
adopts a greedy algorithm to produce a test 
suite in one-test-at-a time fashion.  In Jenny, 
each feature has its own list of tuples.   It 
starts out with 1-tuple (just the feature 
itself).  When there are no tuple left to cover, 
Jenny goes to 2-tuples and so on. Hence, 
during generation instances, it is possible to 
have one feature still covering 2-tuples while 
another feature is already working on 3-
tuples.  This process goes on until all tuples 
are covered. Jenny has been implemented as 

an MSDOS tool using C programming 
language. Jenny supports t-way test 
generation for 2≤t≤6. 

Complementary to the aforementioned 
work, significant efforts also involve 
extending existing pairwise strategies (e.g. in 
the case of AETG and IPO) to support t-way 
testing.  AETG builds a test set “one-test-at-a-
time” until all tuples are covered [27, 28]. In 
contrast, IPO covers “one-parameter-at-a-
time” (i.e. through horizontal and vertical 
extension mechanisms), achieving a lower 
order of complexity than that of AETG [14]. 
AETG is a commercialized tool that supports 
t-way test generation for 2≤t≤6. 

Arshem developed a freeware Java-based 
t-way testing tool called Test Vector 
Generator (TVG) based on extension of AETG 
to support t-way testing [29].  Similar efforts 
are also undertaken by Bryce et al. to 
enhance AETG for t-way testing [11, 30]. TVG 
supports t-way test generation for 2≤t≤6. 

Williams implemented a Java-based t-
way test tool called TConfig (Test 
Configuration) based on IPO [31, 32].   Later, 
IPO is generalized into IPOG for supporting t-
way testing [9]. A number of variants have 
also been developed to improve the IPOG’s 
performance.  These variants including: 
IPOG-D [21], and IPOG-F [33]. Currently, 
IPOG, IPOG-D, IPOG-F are integrated into a 
Java-based tool called ACTS (Advanced 
Combinatorial Testing Suite) [34]. ACTS 
supports t-way test generation for 2≤t≤6. 

More recently, Younis and Zamli 
proposed another variant to IPOG called 
Modified IPOG (MIPOG) [12].  Unlike earlier 
works, MIPOG adopts variants extension 
algorithms during test suite generation. The 
net effect of the variant extension algorithms 

in MIPOG is twofold. First, MIPOG can always 
get less test cases which would be at least the 
same size or even smaller than that of IPOG. 
Secondly, there are no dependencies 
between subsequently generated test values, 
thus, permitting the possibility of 
parallelization. MIPOG supports t-way test 
generation for 2≤t≤7 and reported to support 
even higher t for small system of 
configuration (up to t=12) [12]. 

Seroussi and Bshouty suggest that the 
problem of finding the minimum size of test 
suite for an arbitrary set of tuples is at least 
as hard as this problem [35] (i.e.  NP-hard 
problem).Therefore, it is often unlikely that 
an efficient strategy exists that can always 
generate optimal test set (i.e. each t-way 
interaction is covered by minimum number 
of test cases). As a benchmarking exercise, 
Colbourn web site has collected the current 
best known upper bounds ( termed CAN (t, p, 
v)  where 2 ≤ t ≤ 6) [36], regardless of the 
strategies used. Referring to Colbourn’s web 
site, it should be noted that all the upper 
bounds are found in one-by-one basis, that is, 
no single strategy could be applied and yield 
the best test size in every configuration (i.e. 
due to NP-complete and NP-hard problems).  
As such, even a small contribution over 
existing tools is a daunting task to 
accomplish. 
 
MIPOG and MC_MIPOG Overview 
The MIPOG strategy constructs a t-way test 
set configuration for the first t parameters. 
Then, it extends the test set to construct a t-
way test set for the t+1 parameters, after 
which it continues to extend the test set until 
all t-way test set has been constructed for all 
the parameters of the system. For a system 

Table 8: Speedup Gain Assessment for Group 2: CA (Size, 4, P: 5..15, 5) 

P Size MIPOG MC_MIPOG Grid_MIPOG 
Time Time S_up Time W/M S_up 

5 625 0.128 0.15 0.8533 0.162 5/2 0.79 

6 625 0.31 0.269 1.152 0.276 5/2 1.12 

7 1125 0.778 0.57 1.365 0.563 5/2 1.38 

8 1348 1.981 1.272 1.557 1.294 5/2 1.53 

9 1543 3.735 2.275 1.642 2.197 5/2 1.7 

10 1643 6.9 3.818 1.807 3.575 5/2 1.93 

11 1722 10.642 5.803 1.833 5.216 5/2 2.04 

12 1837 19.39 10.298 1.883 8.394 5/2 2.31 

13 1956 44.169 21.171 2.086 16.605 5/2 2.66 

14 2051 71.104 33.213 2.14 23.78 5/2 2.99 

15 2150 143.29 60.931 2.352 43.553 5/2 3.29 

Table 9: Speedup Gain Assessment for Group 3: CA (Size, 4, 10, V: 2..10) 

V Size MIPOG MC_MIPOG Grid_MIPOG 
Time Time S_up Time W/M S_up 

2 43 0.148 0.141 1.05 0.164 2/1 0.9 

3 217 0.408 0.383 1.065 0.4 3/1 1.02 

4 637 1.39 0.983 1.414 1.061 4/1 1.31 

5 1643 6.9 3.818 1.807 3.575 5/2 1.93 

6 3657 68.32 31.484 2.17 26.076 6/2 2.62 

7 5927 70.495 31.755 2.22 17.846 7/2 3.95 

8 11355 4767.778 1538.719 3.099 703.212 8/2 6.78 

9 18036 5203.01 1605.372 3.241 657.693 9/3 7.911 

10 27306 56786.346 16220.036 3.501 6750.635 10/3 8.412 
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with p parameters, v values, and t degree 
interaction (t≤p), the MIPOG strategy is 
illustrated in Fig. 2.  

To illustrate how the MIPOG works and 
how it can be parallelized, a system with 4 
parameters (three 2-valued and one 3-valued 
parameter) is considered. Fig. 3 shows the 
process of generating a 3-way test set. The 
test set (ts) starts with the eight 
combinations of P1P2P3 (line 3 in Fig. 2). 
Next (i=4), the set of t-way combinations (π) 
of values involving parameter P4 and two 
parameters among the first three parameters 
(P1P2P3) is constructed as tabulated in 
Table 4 with parallelism in mind. Referring to 
Table 4, the first column (“Parameter-
Control”) presents the parameter control 
which is used to select two parameters from 
P1P2P3 to be interacted with P4. The second 
column (“Tuple-set”) presents the 
parameter-values for the selected two 
parameters among the first three 
parameters. Finally, the last column (“P4-

value”) presents the shared value for each 
tuple-set.  

Now, return back to out illustrative 
example in Fig. 3, in horizontal extension, the 
first test case in ts, this test case  starts with 
P1P2P3=000. According to Table 4, there are 
three possible values for P4 (i.e., 0,1 and 2). 
The MIPOG determines the weight (i.e., the 
number of covered tuples). In the case of 
P4=0 (i.e., P1P2P3P4=0000); P4=0, there are 
three parameter control in the first column 
(110, 101, and 011) that presents the 
parameters (P1P2, P1P3, and P2P3) 
respectively, and thus, the test case is 
decomposed into the following tuples {00, 
00, and 00} respectively. Each of the 
decomposed tuples is contained in tuple-set 
column. Therefore, the weight of this 
candidate test case is 3. Similarly, the next 
possible values of P4 are 1 and 2. In the case 
of P4=1 (i.e., P1P2P3P4=0001); P4=1, there 
are three parameter control in the first 
column (110, 101, and 011) that presents the 

parameters (P1P2, P1P3, and P2P3) 
respectively , and thus, the test case is 
decomposed into the following tuples {00, 
01, and 01} respectively. Each of the 
decomposed tuples is contained in tuple-set 
column. Therefore, the weight of this 
candidate test case is also 3. Similarly, the 
next possible value of P4 is 2.  (i.e., 
P1P2P3P4=0002); P4=1, there are three 
parameter control in the first column (110, 
101, and 011) that presents the parameters 
(P1P2, P1P3, and P2P3) respectively, and 
thus, the test case is decomposed into the 
following tuples {00, 02, and 02} 
respectively. Each of the decomposed tuples 
is contained in tuple-set column. Therefore, 
the weight of this candidate test case is also 
3. Thus, MIPOG engine selects parameter 
value witch constructs a test case that has 
the first maximum weight (i.e., 0000). After 
adding the selected parameter value, the 
MIPOG engine deletes the covered tuples 
(i.e., {00, 00, and 00} for P4=0, and 

 
Figure 1: Advanced Option Dialogue for Microsoft Internet Explorer 

 
Figure 2: MIPOG strategy 
 

 

Figure 3: Generation of Test Set Using MIPOG 

 
Figure 4: Algorithm for Grid Cordlet 
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parameter-control (110, 101, and 011) 
respectively). The remaining π set tuples is 
given in Table 5. 

For the second test case in ts, this test 
case starts with P1P2P3=001. According to 
Table 5, there are three possible values for 
P4 (i.e., 0,1 and 2). Again, the corresponding 
weights of these values are (2, 3, and 3) 
respectively. Thus, the constructed test case 
is 0011, the MIPOG engine deletes the 
covered tuples (i.e., {00, 01, and 01} for P4=1, 
and parameter-control (110, 101, and 011) 
respectively). The process of horizontal 
extension is continued for the third till eighth 
test cases in ts; yields the selection the 
following values for P4 (1,0,1,0,0,and 
1)respectively. The remaining π set tuples is 
given in Table 6. 

In vertical extension for P4=0 and 1, the 
remaining π set tuples are empty. As such, 
the first and second partial tests set are 
empty.  Now, the third partial test set (i.e., for 
P4=2) is constructed as follows. Referring to 

Table 6, the π set tuples already arranged in 
descend order (according to the number of 
tuples for each parameter control). The 
maximum weight (number of parameter 
control is 3). The first tuple is 00, with the 
parameter-control 110. Here, the MIPOG 
search engine expands the tuple to be 00*2 
(i.e., by adding * value for corresponding 0-
vlaue in parameter control, and append the 
parameter value (2) at the end, * can be 
further optimized by assigning value to it).  
Next, parameter-control is 101. Thus, the 
expanded tuple (00*2) can be combined with 
the first tuple in tuple set (i.e., 00) yields 
0002.   This candidate test case has a 
weight=3. Therefore, it is added to test suite. 
Then, the MIPOG engine deletes the tuples 
covered by the generated test case (i.e., 
0002). This process is continued until π set is 
empty (line 11-16 in Fig. 2). 

Note that the proposed data structure for 
π set in the MIPOG permits the 
parallelization as follows. Each parameter 

values can be generated and laid in a 
separate processing element. Each 
processing element can handle the 
computation of the horizontal and vertical 
extension for particular value. In our 
illustrative example, there are three possible 
values for P4. Thus, the π set and its 
corresponding computation can be 
distributed to three processing elements. 
These distribution doses not affect the 
process of generation, and hence, the 
generated test suite is identical to sequential 
implementation.  

Building from MIPOG, the MC_MIPOG has 
been proposed in [12]. Here, the processing 
elements are distributed in tightly-coupled 
(Multicore) CPUs. The evaluation, speedup 
gain for adopting MC_MIPOG, and 
comparisons with other existing tools are 
well elaborated in [12].  

In MC_MIPOG strategy the computation 
and memory lay in logically shared memory 
and CPUs. However, the physical memory is 
bounded to the main memory (RAM) of the 
tightly-coupled system. In addition, the trend 
in speedup is also bounded by the number of 
CPUs in the system. To overcome these 
obstacles, we propose an alternative 
distribution of MIPOG aimed for loosely 
coupled system.   
 
Grid_MIPOG 
Like MC_MIPOG, GRID_MIPOG strategy 
distributes the computational processes and 
memory into pieces that are distributed into 
loosely coupled machines. The complete 
implementation of GRID_MIPOG strategy is 
actually based on the following design 
criteria:  

� Memory storages for the tuples and their 
related computation (i.e., horizontal and 
vertical extension) are distributed to 
relatively independent cells, called 
worklets. 

� The worklets can be sited in a single 
machine or multiple machines (i.e. for 
scalability and distribution purposes). 

� The selected test set is stored into a 
shared memory controlled by test 
generation server, called cordlet. 

� The uses of a cordlet are two-fold: as a 
coordinator and a server. 
For clarity, the complete algorithms for 

cordlet and worklet are given in Fig. 4 and 
Fig. 5 respectively. 

For our illustrative example (discussed in 
Section II), The Cordlet waits for three 
Worklets to be connected. After the Worklets 
are connected, the Cordlet assigns values to 
the Woklet (Worklet0, Worklet1, and 
Worklet2).  For instance the Cordlet 
broadcast P1P2P3P4 and t=3 to the 
Worklets. In horizontal extension, the 
Cordlet broad cast the test size (8). Then for 
each test case in ts, the Cordlet broadcast the 
test case to all Worklets. For the first test 
case, the Cordlet broadcasts test case 000 to 
all Worklets. After that, the Cordlet reads the 
weights from Worklet0, Worklet1, and 
Worklet2, these weights values are 3. Then 

 
Figure 5: Algorithm for Worklet 

 
Typical CPU Activities During MIPOG Execution 

 
Typical CPU Activities During MC_MIPOG and 
G_MIPOG Execution 

Figure 6: The CPU Activities 
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the Cordlet add 0 (i.e., construct test case 
0000).  Next, the Cordlet issues delete 
command to Worklet0, and cancel 
commands to Worklet1 and Worklet2. This 
process is continued for the remaining test 
cases in horizontal extension. In vertical 
extension, The Cordlet receives an empty 
partial test set from Worklet0 and Worklet1. 
Finally, The Cordlet receives 4 test cases 
from Worklet2, and then adds these test 
cases to ts. Thus, Grid_MIPOG produces the 
same test suite as in MIPOG.    

Evaluation and Discussion 
In order to assess the speedup gain, we apply 
MIPOG, MC_MIPOG, and GRID_MIPOG to the 
same 3 experimental groups adopted from 
[9, 12] as follows. 

� Group 1: The number of parameters (P) 
and the values (V) are constant at10 and 
5, but the coverage strength (t) varies 
from 2 to 7. 

� Group 2: The coverage strength (t) and 
the values (V) are constant to 4 and 5, but 
the number of parameter (P) is varied 
from 5 to 15. 

� Group 3: The number of parameter (P) 
and the coverage strength (t) are constant 
from t to 10 and 4 respectively, but the 
values (V) are varied from 2 to 10. 
Here, speedup is defined as ratio of the 

time taken by the sequential MIPOG 
algorithm to the time taken by the parallel 
algorithm. In our evaluation, we adopt two 
system configuration and running 
environments. The first environment is a 
standalone system for MIPOG and MC_MIPOG 
execution consisting of Linux Centos OS with 
2.4 GHz Core 2 Quad CPU [37], 2 GB RAM, 
with JDK 1.5 installed. The execution within 
this standalone environment is necessary as 
the base execution time result for MIPOG and 
MC_MIPOG to be compared with that of 
GRID_MIPOG. As discussed earlier, unlike 
MIPOG which has sequential algorithm, the 
MC_MIPOG algorithm adopts tightly coupled 
approach (i.e. concurrent algorithm) over the 
quad CPUs. The second environment is 
intended for Grid_MIPOG execution. The 
environment consists of a loosely coupled 
GRID environment, that is, four machines act 
as a cluster (one for Cordlet as master, and 
others are slaves for Worklets). Here, each 
machine has identical specification for the 
standalone machine. As such, the 
experimental comparison amongst MIPOG, 
MC_MIPOG, and Grid _MIPOG is considered 
fair. Apart from executing within the same 
system configuration and running 
environment, the data structure and 
implementation language of the strategies 
are identical. The only differences are in 
terms of whether or not the employed 
algorithms are sequential, concurrent, or 
distributed. Tables 7 through 9 highlight the 
comparative results in terms of execution 
time and speedup gain amongst MIPOG, 
MC_MIPOG, and Grid_MIPOG. The columns 
“S_up” and “W/M” refer to speedup and 
workers per machines respectively. Note that 

the execution time is in seconds, and MIPOG, 
MC_MIPOG, and Grid_MIPOG produce the 
same test set in all cases.  

The CPU activities during MIPOG, 
MC_MIPOG, and G_MIPOG must also exhibit 
the efficient use of the multi-cores CPUs. As 
depicted in Fig. 6, the typical CPU activities 
for both MIPOG and MC_MIPOG during all the 
experimental groups. Here, due to its 
sequential nature MIPOG strategy utilizes 
only 25 % from the total number of CPU (or 
1/N, where N=Number of CPUs) during 
execution, whilst the MC_MIPOG and 
G_MIPOG utilizes almost all the processing 
power of each cores (i.e. all core utilization is 
> 90%). 

Overall, MC_MIPOG appears to perform 
slightly better than Grid_MIPOG for small 
systems due to heavy networking and inter-
process communications overhead as 
compared to simple thread synchronization 
in a single system. However, Grid_MIPOG 
performs better than MC_MIPOG for higher 
degree interactions (typically t>3), and 
higher number of parameters (typically >6) 
and high number of values (typically >4). 
Extrapolating and performing curve fitting of 
the results from Tables 7 to 9, the trends in 
both MC_MIPG and Grid_MIPOG are to 
achieve maximum theoretical speedup. The 
maximum theoretical speedup is equal to the 
number of variables in the case of MC_MIPOG 
and Grid_MIPOG (assume the number of 
CPUs available>=number of variables); 
otherwise, the maximum theoretical speedup 
equals to the number of CPUs. The maximum 
theoretical speedup is the trend of 
parallelism as far as the number of variables 
(V) is concerned. Also, the speedup grows 
linearly towards the maximum theoretical 
speed up, as far as the number of parameters 
(P) is concerned. Finally, the speedup grows 
logarithmically towards the maximum 
theoretical speedup, as far as the strength of 
coverage (t) is concerned. Specifically, 
Grid_MIPOG is scale better than MC_MIPOG 
as far as the number of parameter values is 
concerned. For instance, the last column in 
Table 9, the maximum theoretical speedup is 
4 and 10 for MC_MIPOG and Grid_MIPOG 
respectively, whilst the practical speedup is 
3.501 and 8.412 respectively. This increasing 
in speedup as far as the number of parameter 
values is concerned can lead to produce less 
execution time for large values as compared 
with small values. For instance, consider the 
fifth and sixth rows in Table 9. In the case of 
the G_MIPOG strategy, the speedup for V=6, 
and 7 are 2.62, and 3.95 respectively. This is 
the reason why the execution time for V=7 is 
less than the execution time for V=6 (i.e.  
17.846 versus 26.076 respectively, see Table 
9). 
 
CONCLUSION 
In this paper, we investigated and evaluated a 
parallel strategy called Grid_MIPOG for t-way 
test data generation on loosely coupled 
architecture. Our results indicate that the 
distributed implementation scales well against 

concurrent implementation (MC_MIPOG) and 
sequential predecessor (MIPOG). As computer 
manufactures make multi-core CPUs 
pervasively available within reasonable costs, 
harnessing this technology is no longer a 
luxury but a viable and useful option.  

The current implementation of the 
MIPOG and its family takes on parameter at a 
time. In fact, as the computing powers 
duplicated every 18 months according to 
Moore's law, it is evidence that taking more 
than one parameter at a time (e.g.  2 
parameters) is also feasible. This research 
avenue is considered as a part of our future 
work that definitely can lead to more 
speedup and perhaps more optimal test size. 

Finally, much research work has been 
done in this field in the last decade; the 
adoption of these strategies for studying and 
testing real life systems (e.g. software, 
hardware, medical, genes) has not been 
widespread. For these reasons, more 
research into the algorithms, techniques, and 
methodologies are required to facilitate its 
adoption in the main stream of software 
engineering. 
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